Friday, July 11, 2008



2.5" hard disk drive
Most modern laptops feature 12 inch (30 cm) or larger active matrix displays with resolutions of 1024×768 pixels and above, and have a PC Card (formerly PCMCIA) or ExpressCard expansion bay for expansion cards. Internal hard disks are physically smaller—2.5 inch (60 mm)—compared to the standard desktop 3.5 inch (90 mm) drive, and usually have lower performance and power consumption. Video and sound chips are usually integrated. This tends to limit the use of laptops for gaming and entertainment, two fields which have constantly escalating hardware demands,[3] however, higher end laptops can come with dedicated graphics processors. These mobile graphics processors tend to have less performance than their desktop counterparts, but this is because they have been optimized for lower power usage.
There is a wide range of laptop specific processors available from Intel (Pentium M, Celeron, Intel Core and Intel Core 2), AMD (Athlon, Turion 64, and Sempron) and from VIA (C3 and C7-M). Motorola and IBM developed and manufactured the chips for the former PowerPC-based Apple laptops (iBook and PowerBook). Generally, laptop processors are less powerful than their desktop counterparts, due to the need to save energy and reduce heat dissipation.
Current models of laptops utilize lithium ion batteries with more recent models using the new lithium polymer technology. These technologies have largely replaced the older nickel metal-hydride batteries. Typical battery life for most laptops is two to five hours with light-duty use, but may drop to as little as one hour with intensive use. Batteries gradually deteriorate over time and eventually need to be replaced in one to five years, depending on the charging and discharging pattern.

Laptops typically use SODIMMs, as shown here.
Docking stations became another common laptop accessories in the early 1990s. They typically were quite large and offered 3.5" and 5.25" storage bays, one to three expansion slots (typically AT style), and a host of connectors. The mating between the laptop and docking station was typically through a large, high-speed, proprietary connector. The most common use was in a corporate computing environment where the company had standardized on a common network card and this same card was placed into the docking station. These stations were very large and quite expensive. As the need to additional storage and expansion slots became less critical because of the high integration inside the laptop itself, the emergence of the Port Replicator as a major accessory commenced. The Port Replicator was often a passive device that simply mated to the connectors on the back of the notebook and allowed the user to quickly connect their laptop so VGA, PS/2, RS-232, etc. devices were instantly attached. As higher speed ports like USB and Firewire became commonplace, the Port Replication was accomplished by a small cable connected to one of the USB 2.0 or FireWire ports on the notebooks. Wireless Port Replicators followed.
Virtually all laptops can be powered from an external AC converter. This device typically adds half a kilogram (1 lb) to the overall "transport weight" of the equipment.
A pointing stick or touchpad is used to control the position of the cursor on the screen. The pointing stick is usually a rubber dot that is located between the G, H and B keys on the laptop keyboard. To navigate the cursor, pressure is applied in the direction intended to move. The touchpad is touch-sensitive and the cursor can be navigated by moving the finger on the pad.
Intel, Asus, Compal, Quanta and other laptop manufacturers have created Common Building Block standard for laptop parts.

No comments: